

IPv6 Essentials

Thierry Van Steirteghem Senior Presales Engineer & IPv6 Evangelist

Who Am I

- Thierry Van Steirteghem
- Senior Presales Engineer
 - > Infoblox
 - > F5
 - > Broadcom Symantec
 - > Thales Gemalto HSM & DPoD
 - > IPv6
- Professional Services
- Certified Trainer
 - > Infoblox
 - > F5
 - > IPv6
- 10 years in Security
 - > Twitter: @steirtet
 - > Email: tvansteirteghem@Exclusive-Networks.be
 - > Linked-in: www.linkedin.com/in/steirtet

Remark

- This slide desk is based on the information gven during the ipv6 meetup at 29 april 2020
- This slide desk is part of an IPv6 basic training given by the author
- Not slides from the training are available in this pdf
- The content is available on the IPv6 council website
- Questions can be sent to ipv6 council or to the author <u>thierry@vansteirteghem.eu</u>

Part 1 : General Stuff on IPv6

IPv6 <> IPv4

Feature	IPv4	IPv6
Number of bits (bytes)	32 (4)	128 (16)
Expressed form	Dotted-decimal	Colon-hexadecimal
Variable-length subnets	Yes	No
Public addresses	Yes	Yes (global addresses)
Private addresses	Yes (RFC 1918 addresses)	Yes (unique local addresses)
Autoconfigured addresses for the local link	Yes (APIPA)	Yes (link-local addresses)
Support for address classes	Yes, but deprecated by CIDR	No
Broadcast addresses	Yes	Multicast used instead
Subnet mask	Required	Implicit 64-bit address prefix length for addresses assigned to interfaces

The next IP version

What will be the next version

Part 2 : IPv6 Address Assignment – DHCPv6

IP version	IPv4	IPv6
Deployed	1981	1999
Address Size	32-bit number	128-bit number
Address Format	Dotted Decimal Notation: 192.0.2.76	Hexadecimal Notation: 2001:0DB8:0234:AB00: 0123:4567:8901:ABCD
Number of Addresses	2 ³² = 4,294,967,296	2 ¹²⁸ = 340,282,366,920,938,463, 463,374,607,431,768,211,456
Examples of Prefix Notation	192.0.2.0/24 10/8 (a "/8" block = 1/256 th of total IPv4 address space = 2 ²⁴ = 16,777,216 addresses)	2001:0DB8:0234::/48 2A00:0000::/12

Structure of a Global Unicast IPv6 address

IPv6 Stateless Address Autoconfiguration

SLAAC

- Neighbor Discovery ICMPv6 messages
- Host get IPv6 address
 - Host asks to receive IPv6 prefix
 - Host creates IPv6 address (privacy enabled?)

SLAAC

- No manual configuration
- Stateless and Statefull DHCPv6
- DNS added via RFC6106

IPv6 Addresses

compare with IPv4

Туре	IPv6	IPv6 Scope	IPv4
Unspecified	::/128		0.0.0.0
Loopback	::1/128	host	127.0.0.1
Unique Local Address	fc00::/7	global	RFC 1918
Private Administration	fd00::/8	global	RFC 1918
Link-Local Address	fe80::/10	link	169.254/16
Documentation	2001:db8::/32		192.0.2/24
Global Unicast	2000::/3	global	
Multicast	ff00::/8	variable	224/4
6to4	2002::/16	global	
Teredo	2001:0000:/32	global	

RS example

	26	13:35:55.919468	::		ff02::1:ffb7:9dd0	ICMPv6	86	Neighbor Solicitation for fe80::10bf:3ac8:32b7:9dd0	
	27	13:35:55.920035	fe80::10bf:3ac8	:32b7:9dd0	ff02::2	ICMPv6	62	Router Solicitation	
	29	13:35:56.203566	fe80::10bf:3ac8	:32b7:9dd0	ff02::16	ICMPv6	110	Multicast Listener Report Message v2	
	20	12.25.57 202772	f-0010hf. 7-00		££001C	TCMDVC	110	Multicast Listonan Donast Massaga V2	
	Frame	27: 62 bytes on	wire (496 bits),	62 bytes capture	d (496 bits) on ir	nterface 0			
	Ethern	et II, Src: Appl	e_9f:88:ff (98:0	1:a7:9f:88:ff), D	st: IPv6mcast_02 ((33:33:00:00:	00:02	2)	
	Intern	et Protocol Vers	ion 6, Src: fe80	::10bf:3ac8:32b7:	9dd0, Dst: ff02::2	2			
▼	Intern	et Control Messa	ge Protocol v6						

Type: Router Solicitation (133) Code: 0 Checksum: 0x6128 [correct] Reserved: 0000000

15

IPv6 Statefull address configuration

DHCPv6

- > Used if router is not found
- > Used if Router Advertisement Message enables DHCPv6
- Manual configuration

DHCPv4 <> DHCPv6 messages

DHCP (IPv4)	DHCPv6
DHCPOFFER	ADVERTISE (2)
DHCPREQUEST	REQUEST (3), RENEW (5), REBIND (6)
DHCPACK/DHCPNAK	REPLY (7)
DHCPRELEASE	RELEASE (8)
DHCPINFORM	INFORMATION-REQUEST (11)
DHCPDECLINE	DECLINE (9)
	CONFIRM (4)
DHCPFORCERENEW	RECONFIGURE (10)
	RELAY-FORW (12), RELAY-REPLY (13)

DHCPv6 – Rapid Commit

Only when client and server commit to use rapid commit

DHCPv6 Prefix Delegation

DHCPv6

Wireshark demo

Part 3 : NAT64 / DNS64

Transition 3 : Translate

NAT64/DNS64

- > Used when a IPv6 only subscriber wants to connect to IPv4 only network.
- > Both translators can be installed on the same or different devices

Remark:

- > When using dual stack in windows:
- > windows client will first try to connect over IPv6 en then IPv4
- > In this case you do not need a translation

DNS64

Differences in output between DNS64 enabled DNS responses and without

Part 4 : IPv6 deployment

Deployment

- IPv6 is not backward compatible with IPv4
- Not all platforms do support IPv6 (for free)
- Extra delays due to translation/tunneling

Security is important

- > IPv6 and firewalls
- > IPSec and authentication are included

Advantages

- > No NAT
- > No Broadcast

Deployment scenarios

- Train your staff
 - > IPv6 Essentials training

Follow your suppliers and ask for info

- > Check applications and hardware for IPv6
- > Is IPv6 an extra license or is it included?
- > Network management tools : support for IPv6?
- Review all SLA's : is support for IPv6 included?
- Is your ISP ready to support native IPv6 connectivity

IPv6 address concept

Should take following into consideration:

- > Use of address types (ULA, GUA,..)
- > Prefix aggregation
- > Use of address mechanisms (DHCPv6, SLAAC, IPAM)
- > Security Aspects
- > Operational aspects
- > Growth

Interface IDs

- Interface ID, 64 bit, with following formats
 - > EUI-64
 - > Manual
 - > Random Changing (Privacy)
 - > Random Stable (RFC 7217)
 - > DHCPv6 static

IPv6 Address planning

- Example
- Arrange per nibble
- 2⁴ = 16 options, 2¹² = 4096 options, 2⁸ = 256 Options
- https://labs.ripe.net/Members/steffann/preparing-an-ipv6-addressing-plan
- <u>https://www.ripe.net/support/training/material/IPv6-for-LIRs-Training-Course/Preparing-an-IPv6-Addressing-Plan.pdf</u>

														Su	ıbr	net	tS	pa	ce	i,												
33	4	ž	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
				0	0							0	0			2				0	0							0	0			8
0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	2		f	f			22				f	f			2				f	f							f	f			8
1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

IPv6 Requirements

- IPv6 RFC 6434 : IPv6 Node Requirements, 2011
- USGv6
- RIPE 554 Requirements for IPv6 in ICT Equipment
 - > https://www.ripe.net/publications/docs/ripe-554
 - > Best Current Practice template to develop tender documents containing IPv6 requirements

- Make sure you get the optimal prefix (preferably PI space)
- Minimize the number of prefix lengths (summarize routing)
- Reserve space for infrastructure
- Structure at nibble boundaries when possible
- Define addressing rules for all scopes
- Evaluate IPAM tools
- When starting new networking projects, include IPv6

Part 5 : IPv6 Security Basics

Issues

- Need for IPAM IPv6 address Management
- Security
 - > Firewall configurations
 - > IDS Systems
- Management of AAAA records in DNS
- Protect RA
 - > Microsoft clients' CPU can rise to 100%
 - http://www.networkworld.com/news/2011/050311-microsoft-juniper-ipv6.html?page=1
 - > Make use of RA-Guard (see RFC 6105)
 - > Example: <u>https://www.youtube.com/watch?v=TfsfNWHCKK0</u>

Address Reconnaissance Myth

- Due to the large address space, It is not possible to scan all the hosts in a network (2⁶⁴ addresses)
- Check "ping6 ff02::1"

Neighbor Solicitation

Mitigation

- ARP spoofing becomes ND spoofing
- GOOD NEWS : First-Hop-Security for IPv6 is available (cisco FHS)
 - > Port ACL & RA Guard
 - > NDP & DHCP snooping
 - > Source Guard, Destination Guard
- (kind of) GOOD NEWS : Secure Neighbor Discovery
 - > SeND = NDP + crypto
 - > Available in IOS
 - > But not in Windows 7, 2008, 2012 and 8, Mac OS/X, iOS, Android

Mitigation (2)

• Other **GOOD NEWS** :

- > Private VLAN works with IPv6
- > Port security works with IPv6
- > IEEE 801.X works with IPv6 (except downloadable ACL)

Example : RA Guard

- Port ACL
 - > Blocks all ICMPv6 RA from hosts
- RA GUARD
 - > Not always implemented, check documentation of network

IPv6 security

IPv6 addresses

- > IPv6 subnets are /64 (minimum)
- > Host randomly select and IPv6 address from tis subnet

IEEE OUI	FF FE	Lower 24 bits of MAC

- > Higher : Vendor specific : known or guessable (google)
- > FFFE defined
- > Lower: MAC address dependent from client
- > MAC addresses can be consecutive

Do I have IPv6 in my network

DHCPv6

Look in Netflow records

- > Protocol 41: IPv6 over IPv4 tunnels
- > Destination IPv4: 192.88.99.1 (6to4 anycast server)
- > UDP 3544: pubic part of Teredo
- > ICMPv6 packets (RA)
- > Check DNS query for ISATAP

Your IPv4-Only network can be vulnerable for IPv6 attacks NOW

Extra tools

- <u>https://www.si6networks.com</u>
- <u>https://www.si6networks.com/tools/ipv6toolkit/index.html</u>

Recommended IPv6 readings

- <u>https://tools.ietf.org/html/draft-ietf-opsec-v6-11</u> (operational security Considerations for IPv6 networks)
- https://tools.ietf.org/html/rfc6434 (IPv6 Node Requirements)

Questions

Thanks for your attention

